NEC 304

STLD

Lecture 14

Binary Adders and Subtractors

Rajeev Pandey

Department Of ECE

rajeevvce2007@gmail.com

Overview

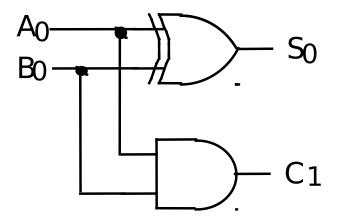
- ° Addition and subtraction of binary data is fundamental
 - Need to determine hardware implementation
- ° Represent inputs and outputs
 - Inputs: single bit values, carry in
 - Outputs: Sum, Carry
- ° Hardware features
 - Create a single-bit adder and chain together
- Same hardware can be used for addition and subtraction with minor changes
- ° Dealing with overflow
 - What happens if numbers are too big?

Half Adder

Add two binary numbers

- A_0 , B_0 -> single bit inputs
- S₀ -> single bit sum
- C₁ -> carry out

A ₀	B ₀	S ₀	C ₁
0	0	0	0
0	1	1	0
1	0	1	0
1	1	0	1



Multiple-bit Addition

° Consider single-bit adder for each bit position.

$$A_3 A_2 A_1 A_0$$
 $A 0 1 0 1$

$$C_{i+1} C_{i} A_{i} + B_{i} S_{i}$$

Each bit position creates a sum and carry

- Full adder includes carry in C_i
- Notice interesting pattern in Karnaugh map.

C_{i}	A_{i}	B _i	S _i	C_{i+1}
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

$C_{i}^{A_{i}}$	B _i 00	01	11	10
0		1		1
1	1		1	
			1	

 $\mathsf{S}_{\scriptscriptstyle{\mathsf{i}}}$

- Full adder includes carry in C_i
- Alternative to XOR implementation

C_{i}	A_{i}	B _i	S _i	C_{i+1}
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

$$S_{i} = !C_{i} & !A_{i} & B_{i}$$
$!C_{i} & A_{i} & !B_{i}$
$C_{i} & !A_{i} & !B_{i}$
$C_{i} & A_{i} & B_{i}$

Reduce and/or representations into XORs

$$S_{i} = !C_{i} \& !A_{i} \& B_{i}$$
$!C_{i} \& A_{i} \& !B_{i}$
$C_{i} \& !A_{i} \& !B_{i}$
$C_{i} \& A_{i} \& B_{i}$
 $S_{i} = !C_{i} \& (!A_{i} \& B_{i} \# A_{i} \& !B_{i})$
$C_{i} \& (!A_{i} \& !B_{i} \# A_{i} \& B_{i})$
 $S_{i} = !C_{i} \& (A_{i} \& B_{i})$
$C_{i} \& (A_{i} \& B_{i})$
 $S_{i} = !C_{i} \& (A_{i} \& B_{i})$

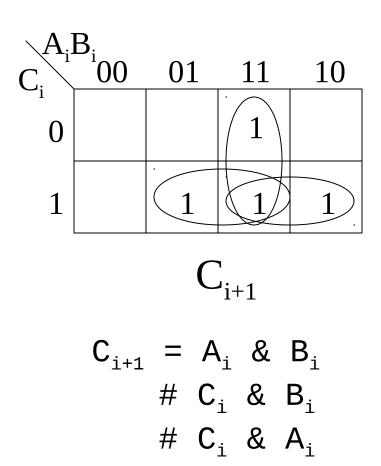
- Now consider implementation of carry out
- ° Two outputs per full adder bit (C_{i+1}, S_i)

$C_i A_i B_i$	S _i	C_{i+1}	A_iB_i	01	11	
0 0 0	0	0			11	
0 0 1	1	0	0		1	
0 1 0	1	0	4	4	4	
0 1 1	0	1	1	1	1	
1 0 0	1	0			1	
1 0 1	0	1		C	'i+1	
1 1 0	0	1				
1 1 1	1	1	Note: 3 inpu	uts		

10

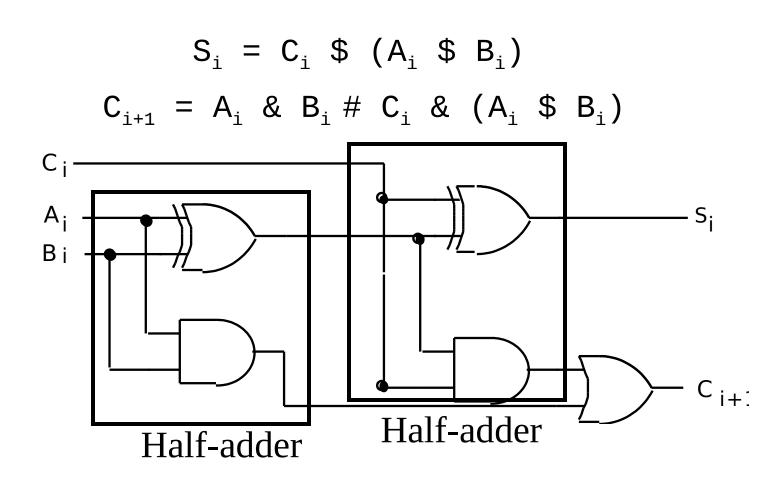
- Now consider implementation of carry out
- Minimize circuit for carry out C_{i+1}

C_{i}	A_{i}	B_{i}	Si	C_{i+1}
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	Θ	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

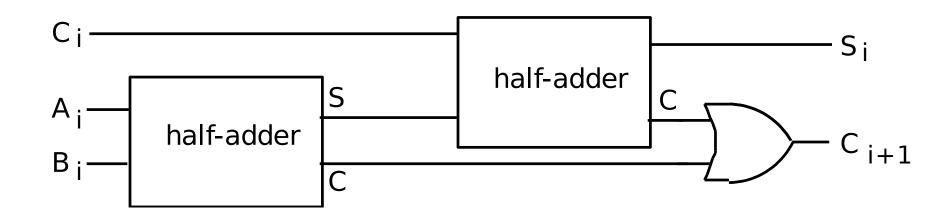


```
C_{i+1} = A_i \& B_i
           # C<sub>i</sub> !A<sub>i</sub> & B<sub>i</sub>
           # C<sub>i</sub> & A<sub>i</sub> & !B<sub>i</sub>
    C_{i+1} = A_i \& B_i
           \# C_i \& (!A_i \& B_i \# A_i \& !B_i)
    C_{i+1} = A_i \& B_i \# C_i \& (A_i \$ B_i)
Recall:
             S_i = C_i + (A_i + B_i)
           C_{i+1} = A_i \& B_i \# C_i \& (A_i \$ B_i)
```

Full adder made of several half adders

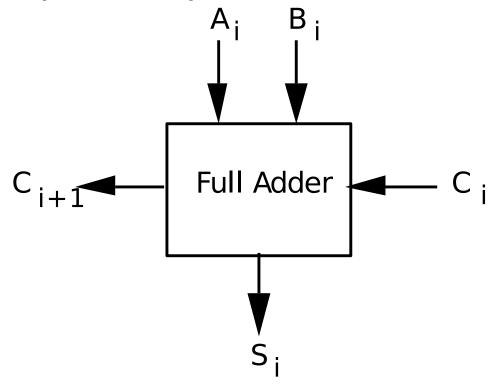


Hardware repetition simplifies hardware design



A full adder can be made from two half adders (plus an OR gate).

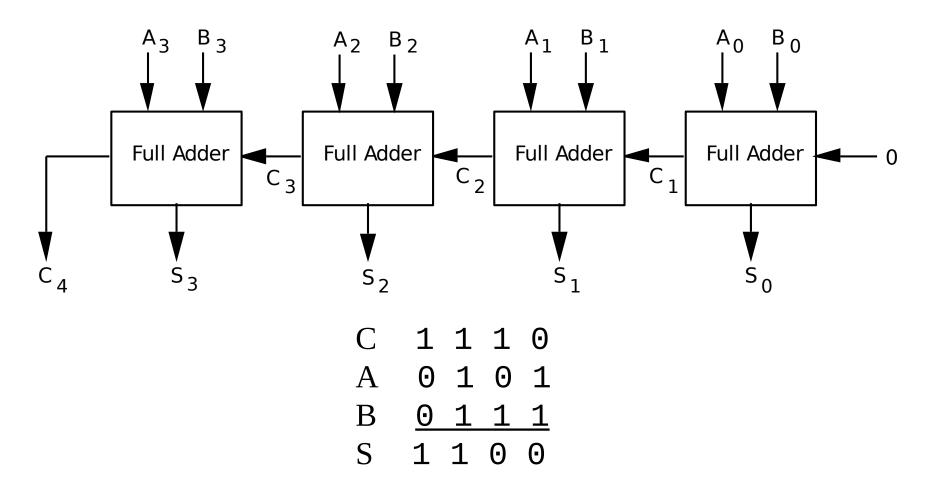
- Putting it all together
 - Single-bit full adder
 - Common piece of computer hardware



Block Diagram

4-Bit Adder

- Chain single-bit adders together.
- ° What does this do to delay?



Negative Numbers – 2's Complement.

- ° Subtracting a number is the same as:
 - 1. Perform 2's complement
 - 2. Perform addition
- o If we can augment adder with 2's complement hardware?

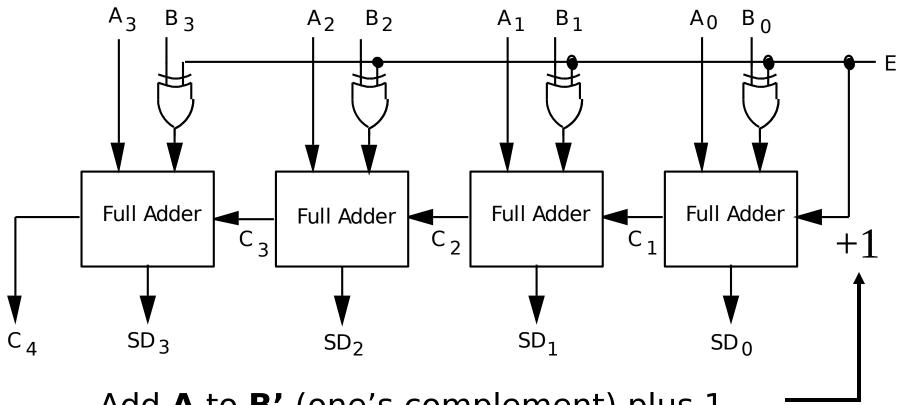
$$1_{10} = 01_{16} = 00000001$$

 $-1_{10} = FF_{16} = 11111111$

$$128_{10} = 80_{16} = 10000000$$

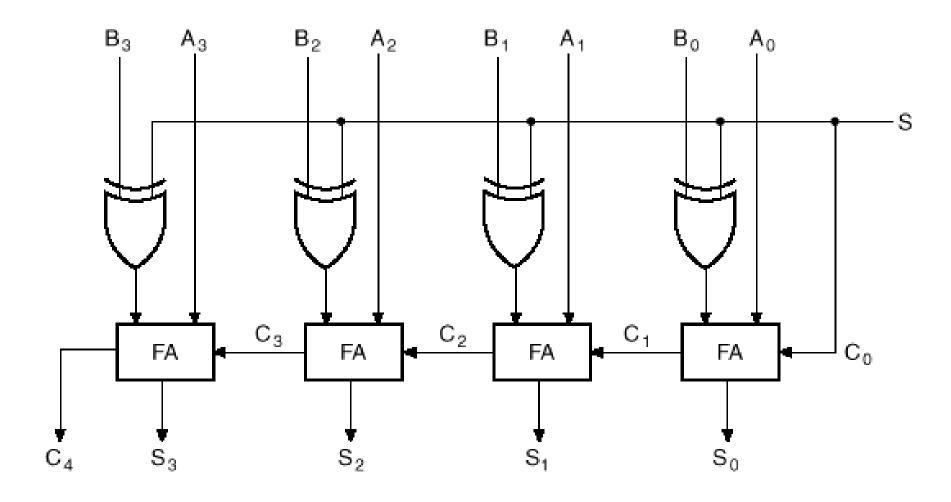
 $-128_{10} = 80_{16} = 10000000$

4-bit Subtractor: E = 1



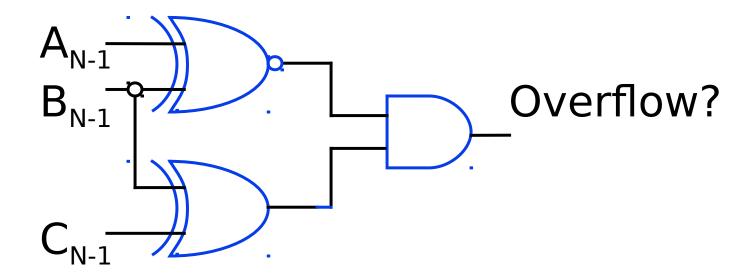
Add A to B' (one's complement) plus 1
That is, add A to two's complement of B
D = A - B

Adder- Subtractor Circuit



Overflow in two's complement addition

- Oefinition: When two values of the same signs are added:
 - Result won't fit in the number of bits provided
 - Result has the opposite sign.



Assumes an N-bit adder, with bit N-1 the MSB

Addition cases and overflow

00	01	11	10	00	11
0010	0011	1110	1101	0010	1110
0011	0110	1101	1010	1100	0100
0101	1001	1011	0111	1110	0010
2	3	-2	-3	2	-2
3	6	-3	-6	-4	4
5	-7	-5	7	-2	2
	OFL		OFL		

Summary

- ° Addition and subtraction are fundamental to computer systems
- ° Key create a single bit adder/subtractor
 - Chain the single-bit hardware together to create bigger designs
- ° The approach is call *ripple-carry* addition
 - Can be slow for large designs
- ° Overflow is an important issue for computers
 - Processors often have hardware to detect overflow
- ° Next time: encoders/decoder.